
Journal of Internet Services
and Applications

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9
https://doi.org/10.1186/s13174-018-0081-8

RESEARCH Open Access

Recovering user-interactions of Rich
Internet Applications through replaying of
HTTP traces
Salman Hooshmand1, Gregor V. Bochmann1, Guy-Vincent Jourdan1* , Russell Couturier2

and Iosif-Viorel Onut3

Abstract

In this paper, we study the “Session Reconstruction” problem which is the reconstruction of user interactions from
recorded request/response logs of a session. The reconstruction is especially useful when the only available
information about the session is its HTTP trace, as could be the case during a forensic analysis of an attack on a
website. Solutions to the reconstruction problem do exist for “traditional” Web applications. However, these solutions
cannot handle modern “Rich Internet Applications” (RIAS). Our solution is implemented in the context of RIAs in a tool
called D-ForenRIA. Our tool is made of a proxy and a set of browsers. Browsers are responsible for trying candidate
actions on each DOM, and the proxy, which contains the observed HTTP trace, is responsible for responding to
browsers’ requests and validating attempted actions on each DOM. D-ForenRIA has a distributed architecture, a
learning mechanism to guide the session reconstruction process efficiently, and can handle complex user-inputs,
client-side randomness, and to some extents actions that do not generate any HTTP traffic. In addition, concurrent
reconstruction makes the system scalable for real-world use. The results of our evaluation on several RIAs show that
D-ForenRIA can efficiently reconstruct user-sessions in practice.

Keywords: User-interactions reconstruction, Rich Internet Applications, Traffic replay, HTTP traces

1 Introduction
Over the last decade the increasing use of new Web
technologies such as “Asynchronous JavaScript and XML”
(AJAX) [1], and “Document Object Model” (DOM)
manipulation [2] have provided more responsive and
smootherWeb applications, sometimes called “Rich Inter-
net Applications”(RIAs) [3] or “Single-page Applications”
[4]. RIAs have become the norm for modernWeb applica-
tions [5]. For example, Google has adopted RIA technolo-
gies to develop most of its major products (Gmail, Google
Groups, Google Maps, etc.) In fact, an evaluation of the
top 100 Web sites from alexa.com shows that 87 of them
use AJAX to communicate with the server-side scripts1.
Despite the benefits of RIAs, this shift in Web devel-

opment technologies has created a lot of challenges;
many previous methods for analyzing traditional Web

*Correspondence: gjourdan@uottawa.ca
1University of Ottawa, 800 King Edward Avenue, K1N 6N5 Ottawa, Canada
Full list of author information is available at the end of the article

applications are not useful for RIAs anymore [6]. This is
mainly due to the fact that AJAX fundamentally changes
the concept of a web-page, which was the basis of a
Web application. Among these challenges is the ability to
analyze HTTP traffic of users’ sessions.
When a user visits a website, user-browser interac-

tions generate a set of HTTP requests and responses
that are usually logged by the Web server. These logs
can be used for example for “Session Reconstruction”. We
define the Session Reconstruction Problem as using only
the logs to recover of an entire user-session, including
the sequence of user-browser interactions during a user’s
visit, a reconstruction of the pages as they were presented
to the user, the input values provided by the user and
the elements of the page in which these inputs were pro-
vided. The reconstruction must not rely on prior instru-
mentation of the application, and must be performed
completely offline (that is, without accessing the original
application).

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-018-0081-8&domain=pdf
http://orcid.org/0000-0001-6067-6545
mailto: gjourdan@uottawa.ca
http://creativecommons.org/licenses/by/4.0/

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 2 of 27

Session reconstruction is specially important when the
only information available from a previous session is the
HTTP logs as could be the case during a forensic analysis
of an attack on a website [7]. In addition, a session recon-
struction tool may be used to understand users’ navigation
patterns in the website (in Web usage mining [8]) or to
derive test-cases for the Web application [9].
The previous session reconstruction methods deal with

traditional Web applications and cannot handle RIAs.
Traditional web applications are composed of a set of web
pages and users navigate the website by following hyper-
links. An assumption often made is that each user action
navigates the application to a new page with a new URL.
This URL is mentioned in the href property of the links
(HTML anchors); therefore by simply considering links on
each page and the next expected traffic, user actions of a
traditional Web application can be extracted.
On the other hand, RIAs are event-based applications.

Any HTML element, and not only links can poten-
tially respond to actions of a user by an event-handler.
These event-handlers can be assigned statically (using the
attributes of an element), or dynamically by calling event-
registration JavaScript functions. Detection of statically
assigned handlers can be done by just scanning the DOM,
however the algorithm needs a more advanced mecha-
nism to keep track of dynamically assigned events. In
addition, a session reconstruction tool for RIAs cannot
tell which requests are going to be generated after trig-
gering an action by simply looking at the target element
of an action. The reason is that many of the requests are
generated by script code running in the browser, and the
response typically only contains a small amount of data
which is used by the receiving script to partially update
the current DOM (see Fig. 1 for an example). Therefore,
extraction of candidate user actions at each state, and
finding the source of a given HTTP request is challeng-
ing in RIAs. Consequently, when the Web application is a
modern RIA, session reconstruction is not easy.
Although it is usually possible to recover user-client

interactions by instrumenting the client or the applica-
tion code, such instrumentation is not always desirable

or feasible (e.g., in the analysis of a previously happened
security incident).
In this paper, we present an approach to reconstruct

sessions of RIAs using HTTP traces as only input. Our
method uses a proxy, which contains the trace, and a set of
browsers to reconstruct the session; The proxy plays the
roles of the server and browsers are responsible for try-
ing candidate actions that change the client-state of the
RIA. The browsers also capture some information about
the client-state of the application after performing an
action, such as the screen-shot and the DOMof each state.
The approach has been implemented in a tool called D-
ForenRIA2. To the best of our knowledge, D-ForenRIA is
the first tool that can efficiently reconstruct user-browser
interactions of a RIA from a given HTTP log. A compan-
ion site has been set up at http://ssrg.site.uottawa.ca/sr/
demo.html where videos and further information is being
made available.
D-ForenRIA is an improvement over a previous version

of the tool [10]. The extensions are based on a new dis-
tributed architecture, adding the ability of detection of
complex user-input actions and actions that do not gen-
erate any HTTP traffic, and proposing a more efficient
way of ordering candidate actions. We also report our
experiments on six different RIAs.

1.1 Demonstration scenario for D-ForenRIA
We have implemented our proposed session reconstruc-
tion algorithm in a tool called D-ForenRIA. In order to
illustrate the capabilities ofD-ForenRIA, we have created a
sample attack scenario, using a vulnerable banking appli-
cation created by IBM for demonstration and test purpose
(Fig. 2). In our case study, the attacker visits the vulnerable
web site (part 1 in Fig. 2), uses an SQL-injection vulnera-
bility to gain access to private information (part 2 in Fig. 2)
and transfers some money to her own account (part 3 in
Fig. 2). She also uncovers a cross-site scripting vulnerabil-
ity that she can exploit later against another user (part 4 in
Fig. 2). This session creates the trace depicted in Fig. 3. D-
ForenRIA can help to recover what the attacker has done
during the session from this input log.

Fig. 1 The body of a typical HTTP response in a RIA (Adapted from TYPO3 RIA [42])

http://ssrg.site.uottawa.ca/sr/demo.html
http://ssrg.site.uottawa.ca/sr/demo.html

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 3 of 27

Fig. 2 Screenshots of an attack scenario

Figure 4 presents the user-interface of D-ForenRIA3. To
reconstruct this session, the user provides the trace as
an input to the SR-Proxy (region 1 in Fig. 4). The users
can configure different settings such as the output folder
(region 2 in Fig. 4) and observe some statistics about the
progress of the reconstruction (region 3 in Fig. 4).
Given the full traces of this incident (Fig. 2),

D-ForenRIA reconstructs the attack in a couple of sec-
onds. The output includes screenshots of all pages seen
by the hacker (region 4 in Fig. 4). To see the details of a
recovered user action, a click on one of the thumbnails

opens a new window. For example, Fig. 5 presents the
details of the step taken for unauthorized login including
the inputs hacker exploited for SQL-injection attack.
The full reconstructed DOM can also be accessed from
that screen.
A forensic analysis of the attack would have been quite

straightforward using D-ForenRIA, including the discov-
ery of the cross-site scripting vulnerability. Comparatively,
doing the same analysis without our tool would have taken
much longer, and the cross-site scripting vulnerability
would probably have beenmissed. A demonstration of this

Fig. 3 Portion of the HTTP log for an attack scenario

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 4 of 27

Fig. 4 Screenshot of the main window of D-ForenRIA

Fig. 5 Details of an SQL-Injection attack in D-ForenRIA

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 5 of 27

case study can be found on http://ssrg.site.uottawa.ca/sr/
demo.html. In the remaining sections of this paper we are
going to explain the details of D-ForenRIA and different
techniques that are used.

1.2 Organization
The rest of this paper is organized as follows: In Section 2,
we first model the session reconstruction problem in
the context of client/server applications, and then in
Section 3 we discuss the session reconstruction problem
in RIAs and present a detailed description of our session
reconstruction approach. We present some evaluation
results that highlight the effectiveness of D-ForenRIA in
Section 4. Then we discuss the state of the art in Section 5.
Finally, we present our concluding remarks and future
directions in Section 6.

2 Session reconstruction problem
The session reconstruction problem can be defined for
any application based on a “client/server” architecture
(such as a Web application or many mobile applications).
In this section, we first explain the general case of the
session reconstruction problem for client/server applica-
tions, and present a solution for this general case. Then,
in Section 3 we explain our particular approach to recon-
struct sessions of RIAs.
Figure 6 represents the context of a session reconstruc-

tion tool. A user interacts with a client and each inter-
action may generate one or more requests to the server
(Fig. 6 part a). The server in turn processes these requests
and sends some responses back to the client. The set of
exchanged request/responses can be logged by the server
or by other tools on the network for further analysis. The
goal of session reconstruction is to find the sequence of
user-client interactions of a session using the log of that
session (Fig. 6 part b).

If we assume that there have been n user-interactions
during a session, the trace of the session can be pre-
sented as < rs1, rs2, . . . , rsn >, where rsi is the sequence
of requests/responses that have been exchanged after
performing the ith interaction. rsi can also be empty
in the case that the interaction does not generate any
requests/response. The goal of the session reconstruc-
tion tool is to find one (or more) sequence of inter-
actions, that generate a sequence of requests/responses
< rs1′, rs2′ . . . , rsn′ > that match the given trace. We
are using a “Match” function and we are looking for a
sequence of interactions such that ∀1≤i≤n Match(rsi, rs′i).
TheMatch function may be “strict”, that is, two sequences
match if they are equal. However, in practice, the Match
function needs to be more flexible and ignore certain dif-
ferences in the observed requests, rs′i, and the expected
traffic rsi. For each user interaction, the session recon-
struction tool also extracts the type of the action, and all
the required information to perform that action.
We also assume that the application can be modeled

by a finite state machine. We define the FSM as a tuple
(S, s0, I, δ) where:

• S is a set of states. Each state corresponds to a
client-side state of the application. In RIAs, the states
represent DOM instances.

• s0 is the initial state of the application, when the
session starts.

• I is the set of possible user-browser interactions with
the application.

• δ : S × I → S is the transition function, where
δ(si, aj) refers to the next state of the application after
the execution of aj in state si.

It should be noted that the aim of the session recon-
struction is not to extract the full state machine of the

(a)
(b)

Fig. 6 a client/server architecture , b Session reconstruction tool (input and output)

http://ssrg.site.uottawa.ca/sr/demo.html
http://ssrg.site.uottawa.ca/sr/demo.html

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 6 of 27

application. Therefore, the reconstruction problem does
not suffer from the “state explosion” problem that is seen
e.g. in the crawling problem [6]. Indeed, reconstructing a
user session is to find a simple path in the state machine
of the application, a path which corresponds to the user
interactions during a session. In fact, the extraction of the
full statemachine would be impossible for a session recon-
struction tool, since that the tool is off-line during the
reconstruction and just operates based on a given set of
recorded trace. A state that was not reached by the user
during the session cannot possibly be reconstructed.
In the case of RIAs, the client is a Web browser

which communicates using HTTP with a server. From the
given HTTP log, we want to produce the set of client-
side states and user-browser interactions during the ses-
sion. Each client-state is defined by the DOM built by
the browser when on that state. The DOM represents the
structure of an HTML page including the elements of the
page and their attributes. The DOM is also used to gen-
erate a screenshot of the page as seen by the user. In

addition, the algorithm finds the XPath of the elements
clicked, and the values that the user submits during the
session.
Consider the example of Fig. 7. It shows a simple

page of a RIA that displays a description of different
products using AJAX (left), and a sequence of gener-
ated requests/responses during a session (right). Given
the user-log of the session, < Rb1,Rb2,Ra1,Ra2,Ra3,Rc1,
Rc2,Rc3 >, a working sequence of actions is < Click(P2),
Click(P1),Click(P3) >. This sequence of actions generates
the given sequence of requests/responses.
Assumptions: To ensure the effectiveness of our ses-

sion reconstruction method, the following assumptions
are made about the target application, the input trace, and
user-input actions.

• Determinism: It is assumed that the application is
deterministic from the viewpoint of the user. It means
that given a state and a given requests/responses
sequence, the next client-state is uniquely defined4. If

(a)

(b)
Fig. 7 a A simple page and generated requests after clicking on each element. b Portion of the user’s log

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 7 of 27

the application is not deterministic from the
viewpoint of the user, then when the session
reconstruction tool tries an action that was actually
performed by the user, it could reach a state that is
not the state reached by the user. In this case, the tool
will not be able to reconstruct the remaining actions.
However, the application may still have randomness
in the generated requests. This means that the
execution of the same action from a given state, may
generate a different sequences of requests and
responses.

• Input traces: It is assumed that the session
reconstruction tool has the log for a single user. Since
the log on the server usually contains the trace for
different users, the session reconstruction tool relies
on other methods (such as [11]) to extract the traffic
for a single user.
In addition, the tool can read the unencrypted
requests/responses and can decrypt the logs if it is
encrypted. This assumption is necessary since the
tool needs to compare the generated request after
performing an action with the input log. We also
assume that the input log is “complete”; this means
that there is no need to have the traffic from the
previous session to reconstruct the current session,
and the log is recorded from the start of the session.

• Access to the application during reconstruction: It is
assumed that the reconstruction is done off-line. This
means that during the reconstruction process there is
no access to the server, and the tool only exploits
previously collected HTTP traces. This assumption
ensures that the tool remains effective even when the
server is not available (for example, because of an
attack or a bug in the application). Moreover,
replaying the session off-line without accessing the
server provides a sandboxed environment which is
especially desirable during forensic analysis.

• User-Input Actions: Regarding the actions that
include input values from users, we have made the
following assumptions; first, it is assumed that the
input values passed into the generated requests are
not encoded in a non-standard way; otherwise, the
session reconstruction tool cannot recover the actual
values entered by the user; the second assumption is
regarding the domain of user-input values. It is
assumed that the tool can produce acceptable values
for a user-input action, using some preset libraries of
possible inputs. This is necessary to be able to
automatically input values that will not be blocked by
client-side validation. Note that this does not mean
that the tool should somehow guess the correct user
inputs values. These values will be found in the log.
Instead the tool should be able to provide some
inputs that will be usable to continue with the session.

2.1 A general session reconstruction approach
Here we present an algorithm for the session reconstruc-
tion of applications which are based on the client/server
model. The algorithm uses three components that partici-
pate in the reconstruction of a session: TheClient, that can
list/execute possible actions on the current state; A Robot
that simulates user-client interactions, and a Proxy that
replaces the actual server and responds to the requests
sent by the client.

Algorithm 1 A general session reconstruction algorithm
Input: An input user log R, switch to find first/all solution(s)
findAll
Output: The sequence of user-interactions that generate the
given log, sol
1: ProcedureMain()
2: sols ← {}
3: proxy ← InitProxy(R)
4: client ← InitClient(proxy)
5: robot ← InitRobot(client)
6: S0 ← client.GetState()
7: SR(S0, R, {})

8: Procedure SR(State Sn, Trace R, ActionPath ap)
9: if R = {} then

10: sols.add(ap)
11: if not findAll then
12: terminate()
13: end if
14: else
15: A ← client.ExtractCandidateActions(Sn)
16: for a ∈ A do
17: Rs ← robot.Evaluate(a, Sn)
18: if proxy.Match(Rs, begin(|Rs|, R)) then
19: Sn+1 ← client.GetState()
20: SR(Sn+1,R − Rs, ap + a)
21: end if
22: end for
23: end if

The algorithm that is used to extract user-interactions,
is shown in Algorithm 1. The main procedure takes care
of initialization. The recursive session reconstruction pro-
cedure, SR, starts at line 8. In this approach, the algorithm
extracts all possible candidate actions of the current state
of the application Sn (line 15), and tries them one by one
(line 17). Trying an action in Sn may change the state of
the application to another state, Sn+1.
If the execution of action a generates a sequence of

requests Rs which Match the requests/responses in the
beginning of R (line 18), a is considered a possible correct
action at the current state 5. Since the requests can be gen-
erated in different orders, the order of elements in Rs does
not matter for the Match function (line 18). The action is
also accepted if it does not generate any requests (Such as
clicking on the “Advanced Search” link in Fig. 7).
The algorithm then appends a to the currently found

action sequence, and continues to find the rest of the
actions in the remaining trace (line 20)6. The algorithm

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 8 of 27

stops when all requests in the input trace are matched.
The session reconstruction algorithm starts from the ini-
tial state of the algorithm (line 7). The output contains
all solutions for the problem. Each solution includes a set
of user-client actions (that matches the input trace). At
each state, there may be several actions which are correct
(line 18). In this case, the algorithm finds several correct
solutions for the problem. However, in practice we can
make the algorithm faster by adding a switch (parame-
ter findAll) to stop the algorithm after finding the first
solution (line 10).
During the execution of the algorithm, the Client, the

Robot, and the Proxy collaborate to perform several tasks;
the Client lists the possible actions on the current state
(line 15), the Robot triggers the action on the current state
(line 17) and the Proxy, responds to the requests generated
during the executing the action by the client (line 17).

2.2 An improved session reconstruction algorithm
Although the general algorithm (Algorithm 1) is easy and
straightforward, it should address different issues to be
practical.

2.2.1 Signature-based ordering of candidate actions
Algorithm 1 blindly tries every action at each state to
find the correct one (lines 16-17). However, in practice
there may be a large number of candidate actions at a
given state, so the algorithm needs a smarter way to
order candidate actions from the most promising to the
least promising. We propose to use a “Signature-based”
ordering of candidate actions as follows.
In this technique, the algorithm uses the “Signature” of

each action to sort the pool of candidate actions. The sig-
nature of an action is the traffic which has been generated
when it was performed previously possibly from another
state of the application (For example, in Fig. 7 the signa-
ture of clicking on P2 is {Rb1,Rb2}). The signature of an
action may also be discovered without the need to exe-
cute the action; for example, the signature of clicking on
“contact-us” in Fig. 7 can be discovered by just looking
at its href property in the DOM (Fig. 14). It is notable
that the session reconstruction algorithm does not have
the signature of all actions; the signature for an action is
extracted once an action is evaluated for the first time.
To apply the signature-based ordering, the session

reconstruction tool should be able to identify different
instances of the same action at different states. We need
to find an id such that this id remains the same in different
states; therefore, in each state the session reconstruction
tool calculates the id for each possible action and uses this
id to find the signature of the action from previous states.
The signature-based ordering, assigns a priority-value

∈ [0,1] to all candidate actions on the current state. This
value is assigned based on how well the signature of the

action, matches the next expected traffic; To this end, the
Match function should return a value ∈ [0,1], where a
higher value means a higher match (e.g., 1 represents a full
match and, 0 mean no match at all). When the signature
of the action is not available (when the algorithm has not
yet executed the action), the priority value of θ (0≤ θ ≤ 1)
is assigned to the action. As a consequence, the algorithm
first tries actions in a decreasing order of match until the
match value reaches the threshold θ . Then, the algorithm
tries actions that do not have any signature, and finally the
least promising actions are tried (actions that have lower
match than the threshold). If two actions have the same
match value (e.g. they both fully match the next expected
trace), the action with the longest sequence of requests,
will have a higher priority.
Example: Consider the simple example in Fig. 7a and

the given trace of Fig. 7b. In this example, we assume that
clicking on a product displays some information about the
product, but does not add any new possible user actions
to the page. The threshold value, θ , of 0.5 is used when we
do not have a signature of an action.
To apply the “signature-based” ordering, the algorithm

assigns priority-values to candidate actions. At the initial
state, the priority for the two href elements is mini-
mum since their initiating requests (about.php and con-
tactus.php) do not match the next expected requests,
< Rb1,Rb2, ... >.
The priority-value for the remaining actions is 0.5

because the algorithm has not tried any action yet.
Assume that actions are tried in the order P1, P2, P3.
The algorithm will try clicking on P1 and P2 to discover
the first interaction (i.e. Click(P2)). In addition, it learns
the signature of clicking on P1 and P2. At the next state,
clicking on P1 gets the priority of 1 since its signature
< Ra1,Ra2,Ra3 > matches the remaining of traces ,
< Ra1,Ra2,Ra3,Rc1, . . . >, clicking on P2 gets prior-
ity of 0 since its signature does not match and P3 gets
0.5 since we have not tried this action yet. So, the cor-
rect action Click(P1) is selected immediately. At the third
state, also Click(P3) gets a priority of 0.5 while Click(P1)
and Click(P2) are assigned priority of 0. At this state the
correct action is selected immediately. To sum up, the 3
actions are found after trying 4 actions on the current
state.

2.2.2 Concurrent evaluation of candidate actions:
Algorithm 1 is sequential and single-threaded. At each
state the algorithm extracts the list of candidate actions
(line 17), and executes them one by one using the client
(the for loop in lines 16-22). The client needs to carry
out several tasks to execute an action; it needs to initiate
several requests, processes the responses, and update its
state. These tasks can take a long time for the client to
finish.

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 9 of 27

Therefore the total runtime can often be decreased by
using several clients. After extraction of candidate actions
(line 17), the algorithm assigns each action to a client
in a new thread. The algorithm does not need to wait
for the client to finish the execution of the action, and
assigns the next candidate action to the next client. In this
approach, several actions can be evaluated concurrently,
which potentially decreases the runtime of the algorithm.

2.2.3 Extracting action parameters
The approach needs to extract all candidate actions on
each state. For each action, we need to extract all the
information required to execute that action (we call such
information the parameters of the action). For a click
action, the only required parameter is the element that is
the target of click. However, for actions that involve user-
inputs, more parametersmust be determined: First, the set
of input elements, and second, the values that are assigned
to these elements (value parameters). We assume that the
client can provide us the list of input elements at each
state. To detect value parameters of user-input actions, we
propose the following approach:

1. At each state, the system performs each user-input
action using an arbitrary set of values, x. These values
are chosen from the domain of input elements in that
user-input action. The system observes requests T
after performing the user-input action.

2. If the next expected traffic is exactly the same as T
but with different user-input values y instead of x,
the system concludes that the user has performed the
user-input action using y.

Example: The text-box on top of the example in the
Fig. 7 is used to search in the sample site. To detect this
user-input action, the algorithm fills the text-box using
a predefined value (here “sampleText”) and compares the
generated request with the next expected request. Since
these two requests (Fig. 8a, b) are quite similar, and the
only difference is the submitted value, the algorithm deter-
mines that the user has performed this action using a
different value, and resubmits the action using the correct
value, namely “IPhone”.

In this technique, the algorithm does not need to know
anything about how the client-side formats the user input
data, and it learns the format by trying an action and
observing the generated traffic. However, this technique
is only effective if the user-input data is passed as is; if
there is any encoding of the submitted data, the actual data
that has been used by the user cannot be extracted from
the logs.

2.2.4 Handling randomness in requests
We have assumed that performing an action
from the same state, may generate a sequence of
requests/responses that includes some randomness. Both
the client-side and the server-side of the application can
contribute to this randomness. The client-side of the
application can generate different requests after perform-
ing an action from the same state, and the server-side may
respond with different responses.
The responses are served by the proxy by replay-

ing a recorded trace. Therefore, there will be no
randomness in the responses during the reconstruc-
tion. However, the session reconstruction algorithm still
needs to handle randomness in the client-side generated
requests.
If the execution of an action generates random requests,

the algorithm cannot detect the correct action since exe-
cuting the action generates requests which are different
from the requests in input trace. The Match function
(line 18 in Algorithm 1), needs to detect the existence of
randomness and flexibly find the appropriate responses to
the set of requests.
There are different forms and variations for the ran-

domness in the generated requests; for example, the
actual order of execution of a series of concurrent
requests/responses can change. In this case, as we
explained in Section 2.1, the Match function ignores
the order of generated requests to find the matching
responses. Requests in a client/server application usually
contain some parameters (such as query-string parame-
ters in a Web application); another form of randomness
happens when the values of these parameters changes
between two executions, for example when the value is
dependent on the current time, or when the value is based

(a)

(b)

Fig. 8 a The generated HTTP request after performing a user-input action using sample data. b the expected HTTP traffic in the trace. (x, y represent
the sample and actual user-input values respectively)

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 10 of 27

on a randomly generated value. To handle randomness of
this type, we use the following approach:
We say that two requests match partially if they have

the same URL, the same set of parameters, but some of
these parameters have different values. For example, the
requests
req.php?language=EN&user=john&time=12345 and
req.php?language=FR&user=john&time=56745
match partially because they are both to req.php, they

have the same three parameters language, user and time,
but the values of parameters language and time are
different.
Suppose that once the system executes action a from

state Sn (line 17 in Algorithm 1), it observes that the gener-
ated requests have a partialmatch with the next expected
traffic. This difference between parameter values can have
two causes:

1. Two different actions may send requests containing
the same parameter but with different values. For
example in a news RIA if we have two actions, one
for fetching the latest technology news sending
requests to fetch.aspx?cat=tech and another action
for fetching the business news requesting
fetch.asp?cat=business, in this case, the parameter
cat differentiates between two types of actions. We
call the parameter cat in the previous example a
“constant” parameter since its value differentiates
between different actions and the value will be the
same for the same action from the same state.

2. Requests for the same action, contain a parameter
that has a changing value after each execution. For
example, in a news RIA there may be an action to
fetch the latest news that sends a request to
latest.aspx?last=12_15_20. In this request, the value
of parameter last represents the time of the last
update fetched by the client and is changed by the
client every time a request is sent. The next request
might look like latest.aspx?last=12_16_20. We call
parameter last of the previous example a “non-
constant” parameter since its value changes at each
execution of the same action from the same state.

When the session reconstruction tool observes that the
value of a parameter in the log differs from the value of
the same parameter in the generated request after exe-
cution of an action, it should categorize the parameter

as constant or non-constant. If the parameter is con-
stant it means that the action is incorrect (that is, this
is not the action taken by the user at that level of the
reconstruction). For example, it would be the case if
the user had clicked to fetch latest technology news,
but the session reconstruction tool had tried fetching
business news at this state. However, if the parame-
ter is actually a non-constant one, its value should be
ignored during comparison. For example, the value of
the last parameter in the previous example is a non-
constant, therefore if the tool triggers an action which
generates latest.aspx?last=12_16_20 and we expect lat-
est.aspx?last=12_15_20 in the log, we have actually
selected a correct action since the value of the parameter
last is non-constant and should be ignored.
A naive approach to handle randomness in requests,

would be to compare the generated request with a
request in the user-log based on a similarity function [7];
if the similarity between two requests is more than a
threshold, the requests are considered a match. However,
this approximate matching may mistakenly match two
requests and jeopardize the reconstruction. Therefore,
our solution does not depend on a threshold and automat-
ically verifies the randomness in requests’ parameters as
follows:
If session reconstruction tool tries action a, in order

to verify that a actually generates a request with non-
constant parameter values the system performs a from
Sn again; if the system observes a change in the value of
the same parameters, it concludes that the value of those
parameters are variable. The Match function does not
consider these changing values for checking the correct-
ness of the action. In the example above, the actual value of
the parameter last will be ignored by the Match function
for that request.
Example: In Web applications, the requests are sent for

a resource (with a URL), and each request can contain
some parameters and their corresponding values (in the
query string of a GET request, or in the body if a POST
request). Two HTTP requests can be considered a partial
match if they are sent to the same resource, have the same
set of parameters, but the values for some parameters are
different.
Figure 9 depicts an example of a request which con-

tains a parameter, t, which gets a different value each
time requested by the browser. By comparing the request
received in the first execution (part a in Fig. 9) with the

(a)

(b)

Fig. 9 a,b: Two HTTP requests that include a parameter with a changing value

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 11 of 27

one received in the second execution (part b), the system
detects that parameter t has changing values and ignores
the value of t later during the reconstruction.
This technique works well if the randomness just hap-

pens in the values of request’s parameters; however, there
are some variation of randomness that cannot be easily
handled by this approach; for example, when the num-
ber of requests that are generated after performing an
action, or the number of parameters in a request are non-
deterministic. Another important example of limitation is
when the changes are slow, for example when the values
are changed based on the date: it won’t match the recorded
traffic, but consecutive execution yields usually the same
values.

2.2.5 Handling non-user initiated requests:
Requests that are exchanged between a server and a client
can originate from different sources. In Algorithm 1, we
have discussed user-initiated requests, however messages
can also be sent without the user initiating a request first.
These requests may originate from a timer on the client-
side, or even from the server-side (such asWebsockets7 in
RIAs). The general session reconstruction algorithm can
be modified to handle these cases, as follows:

• Timer initiated requests: Timers can be detected
based on the signature-based ordering of actions
(Section 2.2.1); Timers are also one of the possible
actions in the current state, so the algorithm first
detects them on the current state (line 15 in
algorithm 1) and evaluates each timer (line 17 in
algorithm 1) to find the timer’s signature. Later
during the reconstruction, the algorithm triggers a
timer when the signature of the timer matches the
next expected traffic.

• Server-initiated requests: In client/server
applications, sometimes the server needs to send
some data to the client. In this case, the given trace to

the proxy contains both requests that originate from
the client-side of the application, and requests that
are sent from the server. The proxy in our general
algorithm has to be changed to detect these
server-initiated requests; When the proxy observes
that the next expected traffic is server-initiated, it just
sends these requests to the client.

3 D-ForenRIA: a session reconstruction tool for
RIAs

In Sections 2.1 and 2.2, we presented a general and
improved algorithm for the session reconstruction prob-
lem. In this section, we propose a session reconstruc-
tion approach for RIAs. This approach realizes the
improved session reconstruction algorithm in the context
of RIAs and addresses several challenges mentioned in the
previous section.
Our solution is implemented in a tool called D-

ForenRIA. In this section, we first present the most
important components of D-ForenRIA, then we describe
the messages exchanged between these components, and
finally explain the details of each component.

3.1 Architecture of D-ForenRIA
Figure 10 presents the architecture of D-ForenRIA with
two main components: A “Session Reconstruction Proxy”
(SR-Proxy) and a set of “Session Reconstruction Browsers”
(SR-Browsers). SR-Browsers are responsible for loading
the DOM and identifying/triggering actions (they com-
bine the role of “robot” and the role of “client” presented in
Section 2.1). The SR-Proxy performs the role of the orig-
inal Web server, and responds to SR-Browsers’ requests
from the given input HTTP trace (that is, the role of
“proxy” in Section 2.1). This ensures that during recon-
struction the SR-Proxy just uses a previously recorded
trace and has no access to the server. Based on our session
reconstruction algorithm, we infer which user-browser
interactions are performed during the session.

Fig. 10 Architecture of D-ForenRIA

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 12 of 27

D-ForenRIA works based on how Web applications
work; during a session, the client does not know any-
thing about the application, and user-interactions with
the application generate a sequence of requests/responses
that are accumulated in the browser. Therefore, dur-
ing the replay, if the client is being fed with the
same set of requests/responses by triggering the same
user-interactions, we should be able to reconstruct the
session.
In other words, we force the browser to issue the

request related to the initial page in the trace; We feed
the browser with the response for the initial page from
the given trace. Through the natural rendering of this
response, the browser will issue other requests (e.g. for
images, JavaScript code) until the page loads completely.
These requests are served by D-ForenRIA’s proxy from
the given trace. During the reconstruction, the browser
tries different actions and the SR-Proxy verifies the gen-
erated requests. When the requests generated after per-
forming an action match the next unconsumed traffic,
the SR-Proxy feeds the browser with the corresponding
responses; this process continues until all HTTP traffic
has been consumed.

3.1.1 Interactions between SR-Browser and SR-Proxy
We now present the communication chain between a SR-
Browser and the SR-Proxy. Session reconstruction can be
seen as a loop of interactions, where the SR-Proxy repeat-
edly assigns the next candidate action to the SR-Browser
(see Fig. 11). We call this repetitive process iteration.

Figure 11 provides an illustration of the sequence of
messages exchanged between the main components. The
messages are exchanged in the following order:

1. At each iteration, the SR-Browser sends a “Next”
message, asking the SR-Proxy the action to execute
next.

2. The SR-Proxy asks the first SR-Browser reaching the
current state to send the information about the state.
This information includes list of all possible actions
on the current DOM, and other information about
the DOM such a screenshot of the rendered DOM.

3. The SR-Browser extracts the state information, and
sends it to the SR-Proxy.

4. The SR-Proxy orders the list of candidate actions
(using the signature-based ordering in
Sections 2.2.1, 3.3).

5. After this, and while working on that same state, the
SR-Proxy assigns a new candidate action to each
SR-Browser that sends a “Next” message, along with
all the required instructions to reach that state (using
an “ExecuteAction(actionlist)” message).

6. As each SR-Browser executes known or new actions,
they generate a stream of HTTP requests. The proxy
responds to the generated requests using the
recorded log (“HTTP Request” / “HTTP Response”
loop).

This outer loop continues until all user actions are
recovered.

Fig. 11 Sequence diagram of messages between an SR-Browser and the SR-Proxy

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 13 of 27

3.1.2 SR-Browsers’ and SR-Proxy’s components
SR-Proxy and SR-Browsers have the following compo-
nents which collaborate to reconstruct the session. In
SR-Browsers, we have:

• The Embedded browser: A real Web browser (e.g.,
Firefox) which provides the ability to manipulate and
access to the RIA’s client states.

• The Controller: The controller is responsible for
sending the “Next” messages to the SR-Proxy asking
the action to be executed next.
The controller also has the following components:

– The Action Executor: Used to execute actions
on the current state (e.g., clicks, form filling,
timers). The execution is done by triggering an
event of a DOM element; the corresponding
event-handler is being executed and may use
the JavaScript engine to complete the
execution; The execution usually updates the
user-interface of the embedded browser.

– The State Analyzer: The analyzer is
responsible for gathering information about
the current DOM, such as the list of event
handlers in the current DOM. In addition, it is
used to extract information (such as the
screenshots of the current DOM) when a new
state is found. Furthermore, the analyzer
checks whether the DOM has been updated
completely after an action is being executed by
the “Action Executor”.

In the SR-Proxy, we have:

• The HTTP Responder: The HTTP responder replies
to the stream of HTTP requests coming from
embedded browsers. The previously recorded HTTP
trace is given as an input to the SR-Proxy.

• The JS Instrumentor: The JS Instrumentor
(JavaScript Instumentor) modifies the recorded
responses before sending them back to the browser.
This instrumentation is done to inject some
JavaScript code to be executed on the embedded
browsers to keep track of the event handlers in each
state (Sections 3.2, 3.4).

• The Next Action Selector: This component keeps
track of previously tried actions and uses this
knowledge to choose which candidate action should
be tried next.

• Signature Repository: The signature repository stores
all detected signatures of actions once tried by an
SR-Browser.

• The Action Verifier: This component confirms
whether or not a performed action matches the

expected traffic in the log. If it is the case, it updates
the output. The output contains all the required
outputs of the session reconstruction process. This
includes the precise sequence of user actions (e.g.,
clicks, selections), the user inputs provided during
the session, DOMs of each visited page, and
screenshots of the pages seen by the user.

D-ForenRIA is based on a set of SR-Browsers that can be
dynamically added or removed during the reconstruction
process. This architecture allows the concurrent execu-
tion of several actions at each RIA’s state.

3.1.3 SR-Browsers’ and SR-Proxy’s algorithms
Based on this architecture, our simplified reconstruction
algorithm executed by the SR-Browsers and SR-Proxy can
be sketched as shown in Algorithms 2 and 3. We briefly
overview the gist of the approach below, before providing
details in the subsequent sections.

Algorithm 2 Sketch of the SR-Browser Algorithm
input: SR-Proxy’s address
1: HandShake(SR-Proxy)
2: e ← AskforNext(SR-Proxy)
3: while e �= finish do
4: if e is “ExecuteAction” request then
5: ActionExecutor.ExecuteAction(e);
6: StateAnalyzer.WaitForStableCondition();
7: else if e is “SendState” request then
8: s ← StateAnalyzer.GetStateInfo()
9: Send(SR-Proxy, s)

10: end if
11: e ← AskforNext(SR-Proxy)
12: end while

SR-Browser: Algorithm 2 specifies the steps executed
by SR-Browsers. An SR-Browser first handshakes with the
SR-Proxy. Then, there is a loop of interactions between
the SR-Browser and the SR-Proxy; at each iteration, the
SR-Browser asks the SR-Proxy what to do next (lines 2
and 11). The SR-Proxy can provide two answers. It either
asks the SR-Browser to execute a set of actions, or it
asks the SR-Browser to send back the state information.
When the SR-Browser executes an action via the Action
Executor (line 5) a stream of HTTP request/responses are
exchanged between the browser and the SR-Proxy. The
SR-Browser waits until all responses have been received,
andmakes sure that the DOMgets settled (line 6). In addi-
tion, when the SR-Browser discovers a correct action and
a new state, the proxy requests the SR-Browser to send
the state information to update the output (lines 14, 16).
The state information includes the screenshot, the DOM,
cookies of the current DOM and most importantly, the
list of all candidate actions on the current DOM. The loop
continues until all interactions are recovered.

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 14 of 27

Algorithm 3 Sketch of the SR-Proxy Algorithm
Input: set of logs Traces
Output: set of actions output
1: ProcedureMAIN()
2: output ← {}
3: while not finished do
4: SR-B ← HandShakeSRBrowser()
5: HandleSRBrowser(SR-B)
6: end while

7: Procedure HandleSRBrowser(SR-B)
8: while not finished do
9: req ← GetRequest(SR-B);

10: if req is an “HTTP” message then
11: HTTPResponsder.respondToHTTP(SR-B,req);
12: else if req is a “Next” message then
13: if ActionVerifier.Match(SR-B.lastRequests) then
14: s ← SendState(SR-B)
15: c ← SortCandidateActions(s, SignatureRepository)
16: output.Add(SR-B.lastAssignedAction)
17: else
18: e ← NextActionSelector.ExtractNextCandidate

Action(SR-B, Traces, c)
19: ExecuteAction(SR-B, e)
20: end if
21: SignatureRepository.record(SR-B.lastAssignedAction,

SR-B.lastRequests)
22: end if
23: end while

SR-Proxy: The algorithm used by the SR-Proxy is
shown in Algorithm 3. The main procedure (lines 1-6)
waits for SR-Browsers to send a handshake. Since D-
ForenRIA has a distributed architecture, SR-Browsers can
join at any moment during the reconstruction process.
After joining of a new SR-Browser, the SR-Proxy spawns
a new thread to execute the HandleSRBrowser method
(lines 10-26). This method assigns a new port to the newly
arrived SR-Browser and responds to SR-Browser’s mes-
sages. If an SR-Browser sends a normal HTTP request
(line 10), the httpresponder attempts to find that request
in the traces. Otherwise, it is a next message and the SR-
Proxy needs to decide what actions the SR-Browser will

do next. To do so, the SR-Proxy first verifies whether or
not the last assigned action to this SR-Browser has gen-
erated requests/response that match the expected HTTP
traffic (line 13). If it was the case, a new correct action
and state have been recovered, and the SR-Proxy asks the
SR-Browser to send its current state information (includ-
ing the list of candidate actions) (line 14). The SR-Proxy
then sorts these candidate actions from the most to the
least promising based on the signature of the actions
(line 15), and adds the newly discovered action to the
output (line 16).
If the action executed by the SR-Browser did not gen-

erate the expected traffic (for example when the action
were not triggered during the session), the next action
selector chooses another action from the pool of candi-
dates, and assigns it to the SR-Browser (lines 18-19). In
all cases, the SR-Proxy also records the requests generated
by an action in the signature repository. The informa-
tion in the signature repository helps later when deciding
if this action should be tried again (line 21). It is also
notable that the SR-Proxy in D-ForenRIA is just used dur-
ing the reconstruction and not for recording the traffic.
The main steps of the session reconstruction procedure
are explained below.

3.2 Extraction of candidate actions
In D-ForenRIA, after a state is discovered, the SR-Proxy
assigns to the browser who executed the right action the
task of extracting the candidate user-browser actions on
the DOM. These actions are then assigned one-by-one to
SR-Browsers by SR-Proxy, and tried concurrently by SR-
Browsers until the correct action is found.
Event-handlers andActions: To find candidate actions,

D-ForenRIA needs to find “event-handlers” of DOM ele-
ments. Event-handlers are functions which define what
should be executed when an event is fired. For example, in
Fig. 12, FetchData(0) is the event-handler for the onclick

Fig. 12 A simple JavaScript code snippet

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 15 of 27

event of P1. The existence of this event-handler means
that there is a candidate action “Click P1” on the current
DOM.
Event-handlers can be assigned statically to a DOM ele-

ment, or dynamically during execution of a JavaScript
code. To detect each type, we use the following
techniques:

1. Statically assigned event-handlers: to find this type of
handlers, it is enough to traverse the DOM and check
the existence of attributes related to event-handlers
(e.g. onclick, onscroll,. . .).

2. Dynamically assigned handlers:
RIAs can also add event handlers dynamically, using
some JavaScript code to assign handlers to HTML
elements. JavaScript libraries (such as jQuery8,
Prototype and MooTools9) also provide their specific
APIs to add event handlers10. One approach to find
event listeners attached by these libraries is to parse
the event information out of each JavaScript library.
However, this approach requires calling the library’s
specific API to find the list of event handlers (such as
calling the retrieve(“events”) method of an element in
MooTools). This approach requires to know the API
of the JavaScript libraries used in the reconstructed
RIAs; since there are many such libraries used by
RIAs this approach is not sustainable.
A more effective approach for finding dynamic
handlers is to account for the fact that no matter
which libraries the RIA uses for assigning handlers,
they all eventually call the JavaScript’s
addEventListener function [12] in the background.
Therefore, by keeping track of addEventListener calls
one can find every dynamically added event listeners.
Since this approach is comprehensive, it is used in
D-ForenRIA. As shown in Fig. 13, D-ForenRIA
overrides the built-in addEventListener function
such that each call of this function notifies
D-ForenRIA about the call (line 3) and then calls the
original addEventListener function (line 4). This
technique is called hijacking [13] and is realized by
the JavaScript instrumentor that injects the code in
the responses sent to SR-browsers from the SR-Proxy
(shown in Fig. 13). Note that because our code is

injected in a way to ensure that it will execute last,
the hijacking will work even if the RIAs itself hijacks
the same methods in the same way11.

The Importance of Bubbling: DOM elements can also
be nested inside each other and the parent node can
be responsible for events triggered on child nodes via a
mechanism called “Bubbling” [14]. In this case, there is
a one-to-many relationship between a detected handler
and possible actions and by finding an event-handler we
do not always know the actual action which triggers that
event. In some RIAs, for example, the Body element is
responsible for all click events on the page. However, in
practice, this event-handler is only responsible for a sub-
set of the elements inside the body element. In this case,
it is hard to find the elements which trigger the event and
are handled by the parent’s event handler. To alleviate this
issue, elements with an assigned event-handler are tried
first. Then, D-ForenRIA tries elements without any event-
handler starting from the bottom of the tree assuming that
leaf elements are more likely to be elements triggering the
event.

3.3 Efficient ordering of candidate actions (SR-Proxy)
Web pages usually have hundreds of elements. So blindly
trying every action on these elements to find the right
one is impractical (see Section 4). D-ForenRIA, uses the
signature-based ordering to order candidate actions at
each state. As we discussed in Section 2.2, the signature
based ordering is based on learning the signature of each
action. In the case of RIAs, the signature of actions can
be explicitly determined from the attributes of HTML ele-
ments that are involved in an action (such as the href
attribute of a link), or determined once D-ForenRIA tries
an action during the session reconstruction. D-ForenRIA
assigns the signature-based scores to all elements on the
current DOM. The SR-Proxy also remembers the sig-
nature of each action during the execution (line 21 in
Algorithm 3).
In addition to signature-based ordering, D-ForenRIA

also minimizes the priority of actions that involve ele-
ments with which users rarely interact; such as actions
that involve elements that are invisible, have no event han-
dler (Section 3.2), or have tags with which users usually do

Fig. 13 Hijacking the built-in JavaScript AddEventListener function to detect dynamically assigned handlers

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 16 of 27

not interact (e.g. script, head). For example, in the DOM
of Fig. 14, themeta, hr and body elements have low impact
tags and therefore clicking on them are given the lowest
priority. Three div tags are also assigned a lower priority
value because one is hidden and the other two have no
handler attached, respectively.

3.4 Timeout-based AJAX calls
RIAs sometimes fetch data from the servers periodi-
cally (e.g., current exchange rate or live sports scores).
There are different methods to fetch data from the server.
One approach, which is called polling, periodically sends
HTTP requests to the server using AJAX calls. There is
usually a timer set with setTimeout/setInterval functions
to make some AJAX calls when the timer fires. To keep
track of such calls,D-ForenRIA takes a two-step approach:

1. Timer Detection: It detects all registered timers by
overwriting the setTimeout/setInterval functions.
The SR-Browser then executes these functions to let
the SR-Proxy know about the signature of the timer.

2. Timer Triggering: Since D-ForenRIA knows the
signature of timers, when it detects that the next
expected HTTP request matches the signature of
some timeout based function, it asks an SR-Browser
to trigger that function.

However, there are two other approaches to implement
periodic updates: Long-Polling which is based on keeping
a connection between client and server open, and Web-
Sockets which creates a bidirectional non-HTTP channel
between the client and server. Currently,D-ForenRIA sup-
ports polling but not Web-Sockets or Long-Polling. This
approach, however, has an important limitation; the tech-
nique assumes that the generated requests after triggering

of the timer remain the same. Therefore, if the timer han-
dler generates changing requests, the technique becomes
ineffective.
Example: Assume that our example in Fig. 7 also has

a timer which registers itself using a setInterval call to
fetch the latest news from the server (Fig. 15). This
timer has an interval of one minute and needs at least
a minute to be triggered. During the reconstruction, the
timer needs to be triggered at the right time to match the
trace. To address this problem, as we described here, D-
ForenRIA detects timer callbacks and calls them at the
right moment.
Figure 16 presents a session of a user with our exam-

ple. This session lasts two minutes and includes {Click
P1, Timer Callback, Click P2, Click P3, Timer CallBack}
events.WhenD-ForenRIA loads the application, it detects
the existence of the timer and executes the callback func-
tion to find its signature. After detection of “Click P1”,
it finds that the next expected traffic matches the signa-
ture of the timer and asks the SR-Browser to trigger the
callback function of the timer. The callback is called later
again, after the detection of the next two actions (Click P2
and Click P3) as well.

3.5 Detection of user inputs (SR-Proxy)
User inputs are an essential part of any user session. There
are two steps in each user input interaction: First, the user
enters some values in one or more HTML inputs, and
second, the application sends these values as an HTTP
request to the server. The standard way to send user
inputs is using HTML forms. In HTML forms [15], each
input element has a name attribute and a value. The set
of all name-value pairs represents all inputs provided by
the user. To detect user inputs submitted using HTTP
forms, D-ForenRIA takes the following approach: First,

Fig. 14 A simple DOM instance

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 17 of 27

Fig. 15 A timer registered using setInerval to fetch the latest news

when an SR-Browser is being asked to extract actions, it
detects all form elements on the current DOM as candi-
date actions (Section 3.2). The SR-Proxy then compares
the next expected HTTP request with the candidate form
submission actions. If the next HTTP request contains a
set of name-value pairs, and the set of names matches
name of the elements inside the form, SR-Proxy identi-
fies the user input action and asks the SR-Browser to fill
the form using the set of corresponding values found in
the log.
In addition to forms, in RIAs any input element can be

used to gather and submit the data to the server. Further-
more, input data are usually submitted in JSON format,
and there is no information about the input elements
inside the submitted request. Therefore, by simply look-
ing at an HTTP request, it is no longer possible to detect
whether the request belongs to a user-input action or not.
To detect user input actions that are not submitted

using forms, D-ForenRIA uses the method proposed in
Section 2.2. SR-Browser considers all input fields (i.e.,
input/select tags) that have an event-handler attached, and
are nested inside a form/div element as candidate user-
input actions. The SR-Browser then needs to decide which
values to put in input fields. For some input element types
(such as radio, select) it is easy to choose appropriate input
values since the element’s attributes contain the set of
possible valid inputs (such as option tags inside a select
element). For some types of input elements (such as a text-
box intended to accept an email address), putting a value
which does not match the accepted pattern may prevent
submission of user input values to the server (because of
the client-side validation scripts). In this case, we assume
that D-ForenRIA has a dictionary of correct sample values

Fig. 16 A session with a timer: time flows from left to right along the
axis (top) at Recording, and (bottom) at Session-Reconstruction time

for different input types. D-ForenRIA, also takes advan-
tage of the new input elements introduced in HTML5
(elements such as email, number and date), to more easily
assign correct values to input element.

3.6 Checking the stable condition (SR-Browser)
The SR-Browser usually needs to execute a series of
actions as decided by the SR-Proxy in response to a “Next”
message. After executing each action, an SR-Browser
should wait until that action is completed and the appli-
cation reaches what we call a “stable condition”. In the
stable condition, no more requests are going to be gener-
ated without new user interaction, and the DOM is fully
updated. This condition must be met, otherwise the SR-
Browser may try to execute the next action too early, an
action that is not yet present on the DOM. To check the
stable condition, an SR-Browser checks two things:

• Receiving All Responses: D-ForenRIA uses two
techniques to be sure that the response for all
generated requests have been received. First,
SR-Browser waits for the window.onload event to be
triggered. This event is being triggered when all
resources have been received by the browser.
However, this event is not triggered when a function
requests a resource using AJAX.
To keep track of AJAX requests, D-ForenRIA
overrides the XMLHttpRequest ’s send and
onreadystatechange functions. The first function is
called automatically when a request is being made
and the second function can be used to detect when
the browser fully receives a response.

• Existence of the Action on DOM: When there are no
more pending requests, the system waits for the
elements involved in the action to appear on the
page. This check is required to let the browser
consume all previously received resources and render
the new DOM.

3.7 Loading the last known good state (SR-Browser and
SR-Proxy)

When an SR-Browser performs an action on state s, and
this execution does not generate the expected traffic, the
SR-Browser needs to return back to some state (most

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 18 of 27

probably s) as instructed by the SR-Proxy. D-ForenRIA
uses a reset approach to transfer the client to a given state.
To return back to the previous step, the SR-Proxy asks
the SR-Browser to reset to the initial state and execute all
previously detected actions [16].
As an alternative to the reset technique, there are

approaches to save/reload the state of the browser. Sav-
ing/reloading the state, however, needs some information
regarding the browser’s internal implementation to get
access to memory structures [17]. Therefore, save/load
techniques are dependent on the browser’s type, and
there is no standard way to implement this idea. On the
other hand, D-ForenRIA’s reset approach relies just on
JavaScript execution and is supported by all browsers.
However, one important limitation of the reset technique
is that it can be time-consuming, particularly when there
is a long sequence of previously detected actions.

3.8 Detection of actions that do not generate any HTTP
request

When the reconstruction is done using only the previously
recorded traffic as input, actions that do not generate any
traffic can present a problem. In RIAs, actions may not
generate any HTTP traffic because of caching or because
the action just changes the DOM without requesting any
resource from the server. To detect such actions, we use
an auxiliary structure called “Action Graph”. In this graph
we define nodes and edges as follows:

• Nodes: Each node represents an action which is
possible in some state of the RIA. Each node also
contains some information about the set of HTTP
requests/responses generated by the action.

• Edges: There is an edge between two nodes a and b,
if there is a state from which a is possible and after
performing a, b is available on the current state
(probably a new state) of RIA.

Let nodeC be any currently enabled action;D-ForenRIA
uses the following procedure to find the next action:
First, it checks all nodes of the graph to see if the sig-

nature of any action matches the next expected traffic.
Suppose that we find such an action D. If D is present on
the current DOM, we can immediately trigger that action.
However, we may also accept D even if it is not present
on the current DOM: This case happens when we find a
path CXD from C to D, and we are sure that no action in
CX generates any HTTP traffic.D-ForenRIA assumes that
an action is not going to generate any traffic in two cases:
first, if an action has not generated any traffic in a previ-
ous execution, and second, if all the generated requests in
a previous execution contain HTTP headers that enable
caching (such as Cache-Control:public headers [18]).
Example: Consider the example in Fig. 7. In this exam-

ple, we have a node for each tried action during the
reconstruction. Figure 17 presents the current state of the
corresponding action graph. Suppose that action “Buy P1”
is enabled at the current state, and the next expected traf-
fic is “GET checkout.php” which is the signature of clicking
on the submit button when the user orders a product.
Here the path: {Buy P1, Submit} is valid since “Submit”
matches the next expected request, and “Buy P1” is known
to not generate any traffic and it can be executed at the
current state.

4 Experiments
To assess the effectiveness of the proposed session recon-
struction system, we have conducted several experiments.
These experiments are not exhaustive and are meant
to evaluate the ability of D-ForenRIA to overcome the
challenges detailed in the previous sections. As will
be explained in Section 4.1, our test RIAs have been
selected because they each present some of these chal-
lenges, and because they use a range of popular JavaScript
libraries.

Fig. 17 Portion of the action graph of Fig. 7

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 19 of 27

Our research questions can be presented as follows.

• RQ1. Is D-ForenRIA able to reconstruct user-session
efficiently?

• RQ2: Does distributed reconstruction have a positive
influence on the performance and is there any limit
on the number of browsers that should be added to
reduce the execution time?

• RQ3: How effective are different techniques of
ordering candidate actions on a given state?

• RQ4: What are the User-Log storage requirements in
D-ForenRIA?

Our experimental data along with the videos are avail-
able for download12.

4.1 Test applications
In this paper, we limit our test-cases to RIAs.We used sites
with different technologies and from different domains.
The reason to focus on RIAs is that other tools can already
perform user-interaction reconstruction on non-AJAX
Web applications (e.g. [7]). Table 1 presents characteristics
of our test-cases.
The first site, C1, in our case study is a web-based open-

source file manager, written in JavaScript using jQuery
and jQuery UI. Our second case, C2, is an Ajaxified
version of IBM’s Altoro-mutual website. This is a demo
banking website used by IBM for demonstration purposes.
Our team has made this website fully AJAX-based where
all user actions trigger AJAX requests to dynamically fetch
pages. C3 is a fully AJAX-based periodic table and C5 is
a Website developed by our team which represents a typ-
ical personal homepage. The more advanced website, C4,
is aWeb-based goal setting and performancemanagement
application built using Google Web toolkit, which has
numerous clickables at each state. Finally, C6 is an open
source project management tool, built using the Spring
framework, and DWR (to handle AJAX). C6 has advanced
user-input submission formats, and random values inside
requests.

4.2 Experimental Setup
Experiments are performed on Linux-based computers
with an Intelő Core™2 CPU at 3GHz and 3GB of RAM
on a 100Mbps LAN. To implement the D-ForenRIA

SR-Browsers, we used Selenium. D-ForenRIA’s SR-Proxy
is implemented as a Java application. For each test applica-
tion, we recorded the full HTTP traffic of user interactions
with the application using Fiddler13.
To address RQ1, we captured a user-session for each

of the subject applications and ran D-ForenRIA to recon-
struct the session using the given traffic. We report
“cost” and “time” of the reconstruction as measures for
efficiency.
The “cost” counts how many events the SR-Browsers

have to execute before successfully reconstructing all
interactions. The following formula calculates the cost of
session reconstruction:

ne +
nr∑

i=1
c(ri) (1)

where ne is the number of actions in the user’s session,
and there are nr resets (see Section 3.7) during reconstruc-
tion and the ith reset, ri, has cost of c(ri). The cost of reset
ri is determined by how much progress have been made
during the reconstruction; If ri, happens when the algo-
rithm has detectedm user-actions, the algorithm needs to
execute m previously detected actions again to perform a
reset (See Section 3.7), therefore c(ri) = m.
We emphasize that the cost provides a more reliable

measure of efficiency than the total time of the session
reconstruction. It is due to the fact that the time depends
on factors that are out of the control of the session
reconstruction tool (such as the hardware configuration
and the networks speed). On the other hand, the cost
only depends on the decisions made by the session
reconstruction algorithm.
As a point of comparison, the results are also provided

for the “basic solution” defined as follows:
The basic solution: Any system aiming at reconstruct-

ing user-interactions for RIAs needs to at least be able
to handle user-inputs recovery, client-side randomness,
sequence checks and be able to restore a previous state;
otherwise the reconstruction may not be possible. In our
experiments, we call such a system the “basic solution”.
It performs an exhaustive search for the elements of the
DOM to find the next action and it does not use the
proposed techniques in Section 3.3. To the best of our

Table 1 Subject applications and characteristics of the recorded user-sessions

ID Name #Requests #Actions URL

C1 Elfinder 175 150 https://github.com/Studio-42/elFinder

C2 AltoroMutual 204 50 http://www.altoromutual.com/

C3 PeriodicTable 94 45 http://ssrg.site.uottawa.ca/apr5/success1/

C4 Engage 164 25 http://engage.calibreapps.com/

C5 TestRIA 74 31 http://ssrg.eecs.uottawa.ca/testbeds.html

C6 Tudu Lists 80 30 https://sourceforge.net/projects/tudu/

https://github.com/Studio-42/elFinder
http://www.altoromutual.com/
http://ssrg.site.uottawa.ca/apr5/success1/
http://engage.calibreapps.com/
http://ssrg.eecs.uottawa.ca/testbeds.html
https://sourceforge.net/projects/tudu/

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 20 of 27

knowledge at the time of writing, no other published
solution provides such a basic solution; thus there is no
other solution that can reconstruct RIA sessions, even
inefficiently.
The Min-Time: If our session reconstruction algorithm

can find all user-browser interactions without trying
incorrect actions its execution time becomes minimum.
In this case, the algorithm does not need to do any reset.
We report the inferred time for this “no-reset” algorithm
by measuring the total time required by D-ForenRIA
to reconstruct the session minus the time spent during
reloading the last known good state. This provides an
“optimal” time for our tool.
To address RQ2, for each given user-session log, we ran

D-ForenRIAwith 1, 2, 4 and 8 browsers and report the cost
and time of the reconstruction to measure the scalability
of the system. To address RQ3, we ran D-ForenRIA using
a single browser and measure how effective is applying
each of the element/signature ordering. Finally, to answer
RQ4 we report storage requirements for each action in the
compressed format and the effect of pruning multimedia
resources from traces.

4.3 Experimental results
Efficiency of D-ForenRIA (RQ1): Table 2 presents the
time and cost of successful, full sessions reconstruction
using D-ForenRIA, and the basic solution. In this exper-
iment we use just a single SR-Browser. We report time
measurement for several browsers in the next section. In
all cases, the reconstructions are complete and successful,
meaning that the complete set of user actions are correctly
recovered.
D-ForenRIA outperforms the basic solution in all cases.

If we look at the number of events that must be executed
to discover the next action (column “#Events/Action”
in Table 2), on average across all experiments it takes
D-ForenRIA the execution of 34 events to find the next
single user-browser interaction while the basic solution
needs 1720 events to find the same thing. Regarding the
execution time, D-ForenRIA (even using a single browser)
is orders of magnitudes faster than the basic solution. On
average, over all experiments, D-ForenRIA needs 12.7 s

to detect an action while the basic solution needs around
8 min to detect an action.
Number of Resets per Action: Figure 18 presents a break-

down of the number of resets needed to detect a single
user browser action in the test cases in D-ForenRIA and
the basic solution. For D-ForenRIA, in all cases the major-
ity of actions are identified without any reset. (The worst
case happens in C4 where 32% of the actions need at least
one reset to be found and 12% of these actions need more
than 50 resets). On average in our test-cases, 83% of the
actions are found immediately at the current state based
on the ordering done by the SR-Browser and SR-Proxy. On
the other hand, for the basic method (Fig. 18b), 52% of the
actions need at least 25 resets. This figure also shows that
the basic solution tries more than 50 actions to find 32%
of actions.
Performance of the Distributed Architecture (RQ2):

Figure 19 presents the execution time of the system when
we add more browsers to reconstruct the sessions. The
results are reported for 1, 2, 4 and 8 browsers. Since
D-ForenRIA is concurrently trying different actions on
each DOMwe expected that adding more browsers would
speedup the process as long as the system required resets.
Specifically, if the algorithm needs nri resets to find
the ith correct action, using up to nri browsers should
decrease the execution time to find that action, while
adding more browsers would not contribute any speedup.
The results we obtained verified this argument. The best
speedup happens in C3, C4 and C6 where we have the
largest number of resets (See Fig. 18). For C5 adding
more browsers is not as effective as C4 and C3 since
many actions are found correctly without the need to
try different actions (Ordering of actions detects the cor-
rect action as the most promising one (Section 3.3)).
Sometimes, adding more browsers is not beneficial; for
example in C1 and C2, we observed no improvement in
the execution time after adding more browsers (from 2
to 8). This is because in these application many actions
are found immediately by D-ForenRIA. However, concur-
rent trying of actions is the key to scalability when the
signature based ordering cannot find the correct action
at states.

Table 2 Time and cost of sucessfull reconstruction using D-ForenRIA, the basic solution, and Min-Time

ID D-ForenRIA Basic solution Min-Time

#Events #Events/Action Time (H:m:s) #Events #Events/Action Time (H:m:s) Time (H:m:s)

C1 183 1 0:02:44 102933 686 09:51:26 00:02:21

C2 52 1 0:02:25 34505 690 04:31:57 00:02:06

C3 1325 30 0:04:22 308548 6856 19:28:48 00:01:12

C4 3506 140 0:19:47 21518 861 02:12:01 00:01:36

C5 319 10 0:02:29 14847 478 00:48:29 00:00:39

C6 631 21 0:11:24 22529 751 02:32:39 00:05:21

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 21 of 27

(a) (b)
Fig. 18 Breakdown of the number of resets needed to identify a user-browser interaction in D-ForenRIA (a) and in the basic solution (b)

Fig. 19 Scalability of D-ForenRIA in different RIAs compared to the Min-Time

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 22 of 27

Efficiency of Candidate Actions Ordering Tech-
niques (RQ3): As we discussed in Section 3.3, SR-Proxy
and SR-Browsers in D-ForenRIA collaborate to find the
most promising candidate actions on the current DOM.
D-ForenRIA uses several techniques which we categorized
as “Element-based” and “Signature-based”. To understand
the effectiveness of theses techniques we measured the
characteristic of each DOM during reconstruction. For
each DOM, we looked at the number of elements, number
of visible elements, number of elements with a handler,
number of leaf elements, and also the number of signa-
tures that can be applied on the DOM. Table 3 presents
the average of these measurements for all DOMS of the
test cases.
In our experiments, ordering based on visibility helped

us in finding correct actions sooner. We observed that in
our test cases, all actions have been performed on vis-
ible elements on the page. On average, ordering based
on visibility reduces the promising candidate actions by
18%. We also expected that the user-interactions happen
with elements with an event-handler. The ordering based
on event-handler was effective in all cases except C4. In
all other RIAs, all the user-actions are performed on ele-
ments with an event handler; If we exclude C4, 76% of
elements don’t have any handler. In RIAs like C4 where
there is a single handler to handle all events on the DOM,
it is very challenging to find elements with actual event-
handlers. As we suggested,D-ForenRIA gives high priority
to leaf elements of the DOM (Section 3.3). However, there
is still a considerable ratio of leaf nodes, 55% on the
DOMs. Giving higher priority to leaf nodes helped us to
find correct actions in less time, since in C4 all the actions
were performed on leaf nodes.
To sum up, in websites similar to C4, it was insuf-

ficient to just apply “Element-based” ordering, however
“Signature-based” was effective in all cases; Although we
could only apply the signature-based ordering on a rather
small portion of the actions in each page (on average 14%
of actions on each DOM, since most of the actions have
not been executed and have not shown a signature), it

Table 3 Characteristics of DOM elements and ratio of actions
with signatures at each DOM

ID #Elements Visible(%) Handlers(%) DOM
leaves(%)

Signs.
applied(%)

C1 79 81 18 55 4

C2 108 98 29 47 12

C3 648 64 19 77 8

C4 268 85 0.3 43 20

C5 44 97 23 50 23

C6 148 68 32 59 19

Average 243 82 20 55 14

could immediately detect the correct action on eachDOM
in 83% of cases (See Fig. 18).
HTTP-Log Storage Requirements (RQ4): One of the

assumptions of the input user-log forD-ForenRIA is that it
should contain both HTTP requests and responses. Since
the input includes the body of requests and responses, one
may be concerned about the size of the user-log. To inves-
tigate the storage requirements of “Full” HTTP traffic we
measured some features of HTTP logs in our test cases
(Table 4).
As expected the number of requests for each action is

quite low. In our experiment the actions with the most
number of requests are usually the first page of the appli-
cation and the average number of requests per action
is less than 3 requests. This low number of requests is
expected because of AJAX calls for partial updates of the
DOM which are common in RIAs. To measure the stor-
age requirements, we calculated the compressed required
space to store the “Full” HTTP request-responses of each
action14. The required size per action varies from as low
as 1.12 KBs to the high of 11.74 KBs for C4 and the aver-
age is 3.68 KBs. We also considered pruning multimedia
resources from the log (i.e,. images and videos). These
resources affect the appearance of the website, and usually
do not affect the ability of the website to respond to user-
interactions. Therefore, pruning multimedia resources
usually does not jeopardize the reconstruction process.
With pruning, the average required space for a single
action dropped by 14% and reached about 3.19 KBs.

4.4 Discussion:
Recording HTTP traffic: The HTTP requests exchanged
between a browser and the server can be logged at differ-
ent places in the network; they can be logged on the server,
in the proxy-server or even on the client-side. However,
recording on the client-side requires additional config-
uration/installation of recording software which is not
desired. HTTP servers (such as Apache15 or IIS16) can be
configured to record the full traffic. To use D-ForenRIA,
there is no need to change the Web application or to
instrument any code on the client side17.
In addition, the traffic can also be captured while it goes

through the network using other tools such as proxies.

Table 4 Log size features for test cases

ID Reqs./Action Log Size/Action (KB) Pruned Log Size/Action (KB)

C1 1.16 1.58 1.2

C2 1.36 1.41 0.41

C3 1.05 1.12 1.12

C4 6.56 11.47 9.96

C5 2.38 3.38 3.38

C6 2.66 3.16 3.12

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 23 of 27

Recording using proxies (or similar tools) is especially
important in practice when a RIA sends requests to exter-
nal servers since recording the traffic on external servers
is inconvenient and usually not practical.
However, the recorded traffic using a proxy may be

encrypted; the encrypted traffic may break our tool since
the SR-Proxy cannot compare the generated requests with
the log and verify the actions executed by SR-Browsers. In
this case, the session reconstruction needs to take mea-
sures, such as a man-in-the-middle interception, to be
able to read the unencrypted requests/responses.
SSL and recording HTTPS traffic: D-ForenRIA needs

an access to the traffic in plain text format to perform the
reconstruction. Nowadays, SSL/TLS [19] is widely used to
encrypt the traffic between the client browser and server,
making a network level direct access to the plain text of
the traffic all but impossible. However, when the Web
server receives an encrypted request, it must first decrypt
it before processing it. Similarly, the response is first pro-
duced in plain text server-side before being encrypted and
sent to the client. Therefore, HTTPS traffic is not actu-
ally a problem for session reconstruction if the logs from
which the session is reconstructed are generated by the
server hosting the application, which is in fact the normal
situation: the reconstruction is carried out on behalf of the
owner of the web server to investigate a security breach
on that server. If access to the server logs are not possible,
other methods are possible for HTTPS interception [20];
these methods are frequently used in industry to monitor
an internal network, or by antivirus software for example,
but they are more intrusive and require the installation
of a certificate on the client. Nevertheless, such HTTPS
interception system do provide perfectly adequate logging
mechanism to allow session reconstruction on RIAs using
HTTPS.
SSL-enabled sites do pose another issue for the session

reconstruction process: the SR-Browsers communicate
with the SR-Proxy as if the latter was the real server.
Therefore, if the RIAs was using HTTPS, the reconstruc-
tion will use it as well, and the traffic should be encrypted
based on the server’s certificates which is not available to
our tool. To solve this issue,D-ForenRIA’s SR-Proxy acts as
man-in-the-middle [21]; we install our own certificate in
SR-Browsers and then we just create and sign certificates
with it.
User-input values encoded at client-side: We have

assumed that the values used as sample data to detect
user-input actions are going to be observed in the request
generated after performing the action (Section 3.5). If
the RIA applies some transformations on the input data
before submitting it to the server, this can cause problems
for the proposed technique. For example in C6, once a
user selects a true/false value from a select element, the
selected value is encoded as numerical values of 0/1. To

alleviate this problem, our technique can be improved in
the following way.
For each user-input action, each user-input element is

being tried with all possible values for that element (For
example the form that contains a select with true/false val-
ues will be submitted twice, once with true selected and
once with false as the selected value). This shows how the
RIA maps different user input values to values inside the
HTTP requests. However, this approach is only effective
when the set of possible values for a user-input element
is predefined (such as select, checkbox or radio input ele-
ments). In case of a free form element (such as a text-box),
it is impossible to try all possible input values and find
the mapping. Anecdotally, we have not seen many RIAs
that encode textual user inputs. This is probably because
RIAs usually run over HTTPS and thus do not need to
worry about the data being intercepted. Therefore, what
D-ForenRIA supports is based on awidely utilized practice
in modern RIAs. It would be possible to enhance D-
ForenRIA’s ability to handle non-standard value encodings
by adding library-specific decoding code if a commonly
used JavaScript library was used to encode user-input in a
non standard way. This kind of enhancement is however
beyond the scope of this research.
Variations in an action’s signature: The signature-

based ordering assumes that an action would gener-
ate the same set of requests at different states. When
this is true, it is possible to predict the behavior of
an action in the current state, based on the action’s
behavior in previous states. Although this assumption
holds in majority of cases in our experimental results
(Fig. 18), there are a few cases where this assump-
tion is not satisfied. In our test applications, only C5
exhibits this behavior: the list of different items (such
as products, photos,...) are presented in paginated cat-
alogs and there are next and previous buttons to navi-
gate between pages. The next (and the previous) button,
generates different sets of requests in different states.
Therefore, using the signature-based ordering is not
effective in this case. Consequently, when D-ForenRIA
observes this variation in the generated requests of an
action, it disables using the signature information to order
the action.
Importance of multi-browser support: Selenium [22]

is a set of tools that enable a program to instantiate a
Web browser and trigger different events of a Web page.
D-ForenRIA uses Selenium to implement the SR-
Browsers. One important feature of Selenium is that it
supports the most popular browsers. This feature enables
us to use different browsers (for example Chrome or Fire-
fox) during reconstruction. It is important forD-ForenRIA
to use the browser that the user used while visiting the
website. For example, in our applications, C4 could only be
reconstructed using Firefox since the traces are generated

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 24 of 27

using Firefox, and the website generates different traffic
based on the user’s browser18.
Hijacking JavaScript functions: To keep track of events

on each state, D-ForenRIA hijacks several correspond-
ing JavaScript methods. This includes overriding methods
such as setTimeout, setInterval, etc. One may wonder
whether this overriding interferes with the RIA if the
RIA itself hijacks these methods. To mitigate this issues,
D-ForenRIA’s hijacking mechanism is executed after pos-
sible hijacking codes executed, and it includes the RIA’s
code for the hijackedmethod. In other words,D-ForenRIA
first executes the application’s code for the JavaScript
event (such as setTimeout) and then instruments its
required code. This approach guarantees execution of the
RIA’s code before the code required by D-ForenRIA.
Non-Deterministic RIAs: Many sites (such as news

websites, web-based mail clients etc.) are not determinis-
tic, and the next state of the application when a request
is sent will depend on some other evolving conditions.
Since we assumed that the RIA under reconstruction is
deterministic, one may argue that this assumption limits
the applicability of the tool in the real world. For exam-
ple, loading the home page of a news website each time
probably results in different content. However, in the ses-
sion reconstruction context, we replace the server with
a proxy; the proxy always replies to a request using pre-
viously recorded traffic. Since the response is always the
same (which corresponds to the response logged during
the actual session) the application becomes determinis-
tic for that action (e.g. in the case of a news website,
loading the homepage from a prerecorded log always
returns the same set of news). This type of server-side
non-determinism is not a problem for the session recon-
struction problem.
Generalization of our testing results: We discuss in

the following whether one can assume that our results
remain valid for user-session reconstruction in general,
for any RIA. There are several issues that may limit such a
generalization.
One issue is about supporting all technical features of

RIAs; several features need to be added to D-ForenRIA,
to make the tool applicable to more RIAs. Some of these
features can be easily added to the tool; for example,
D-ForenRIA currently does not support user actions that
involve a right-click or scrolling a list. However, the cur-
rent techniques in D-ForenRIA can be easily extended
to handle these events. On the other hand, adding fea-
tures such as handling the traffic generated by Web sock-
ets/long polling, or coping with incomplete input trace

that is recorded from the middle of a session, need more
research and entirely new techniques.
A threat to the validity of our experiments is the gener-

alization of the results to other test cases. To mitigate this
issue, we used RIAs from different domains and test cases
built using different JavaScript frameworks (Table 5). In
addition, each of these applications is bringing new chal-
lenges for the session reconstruction tool. Table 6 presents
the challenges we faced during reconstruction of the trace
for each test case. We tackled these challenges one after
the other starting from simpler cases such as C2, C3, C5
to more complex test cases C4 and C6. Although our ses-
sion reconstruction approach is not an exhaustive one
that handles every possible case, we have tried to solve a
collection of difficult problems. However, there are more
challenges to be addressed.
Another issue is regarding our input traces. We are

using a single trace for each application which includes a
limited number of user actions and is recorded by mem-
bers of our research group. One may ask whether these
traces are representative of the users of that application?
We argue that the session reconstruction problem is sim-
ilar to code testing, where people are trying to reach
sufficient code coverage; each RIA consists of several dif-
ferent actions, but many of them trigger the same code.
Here we are not trying to be representative because it is
not meaningful in this case, what we are trying to do is
to have a trace that covers the code of the application
appropriately.
To measure the coverage of our traces, we measured the

ratio of Javascript code executed during a session19. As
Table 7 shows, the average code coverage is 82.7% with the
minimum of 71.6% (for C5). In C2, all the possible actions
have been performed during the session, and any other
trace is just going to be a combination of these actions in a
different order. In C1, C3 and C5, our traces do not include
simple actions (such as actions that change the language of
the RIA, or show a dialog). In C4 and C6 we have actions
that encode user-input values, which are not supported
by the current implementation of D-ForenRIA. Therefore,
these actions are not included in our traces.
The characteristics of the RIA, can affect the perfor-

mance of the signature based ordering. In the signature-
based ordering, the assumption is that an action that is
tried in a state will be present in other states of the RIA.
If in a RIA performing an action generates an entirely
new set of actions on the new state, the signature-based
ordering will not be effective. However, based on the “par-
tial updates” of the DOM in RIAs, usually performing an

Table 5 JavaScript frameworks of our test cases

Test case C1 C2 C3 C4 C5 C6

JavaScript framework jQuery/jQuery UI Ajax Ajax GWT, Prototype Ajax DWR

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 25 of 27

Table 6 Challenges in our test cases

Challenge
Test case

C1 C2 C3 C4 C5 C6

Complex user-inputs X X X X

Changing values in Requests X X

Number of candidate actions X X X

Bubbling X

Timers X X

Actions without HTTP traffic X X

action slightly changes the available actions on the page.
Therefore, we believe that the signature-based ordering is
effective in most RIAs.

5 Related works
Formerly, user-session reconstruction meant being able to
find which pages a user had visited during a session from
server logs. This task is often a preprocessing step forWeb
usage mining [23, 24]. In this paper, we assume that indi-
vidual user-session have already been identified using one
of these techniques [11, 25]. The previous session recon-
struction approaches can be categorized as proactive and
reactive methods [26].
Proactive methods record detailed information about

actions during the actual session and usually do not deal
with the recorded HTTP traffic. In proactive methods,
the data about each user-browser action is collected dur-
ing the actual session. Atterer [27], proposed to use a
proxy which inspects HTTP responses from the server,
and injects a specific user-tracking JavaScript code in the
responses. Instead of using proxies, developers can also
add user-tracking scripts to their code. The most popu-
lar example of these systems is Google Analytics [28]. The
commercial products such as ClickTale [29] and ForeSee
cxReplay [30] capture mouse and keyboard events in Web
applications. The actions of the user can also be logged
with browser add-ons. The Selenium IDE (implemented
as a Firefox plug-in) [22] and iMacros for Chrome [31],
or WaRR [32] record user actions and replay them later
inside the browser. DynaRIA [33], ReAjax [34] also use
an instrumented browser to capture all user interactions
with an AJAX application. These tools provide several fea-
tures to analyze the runtime behavior and structure of the
application. In addition to using an instrumented browser,
FireDetective [35] also instruments the server-side code
of the application to capture a more accurate behavior

Table 7 Code coverage of our traces

Coverage
Test case

C1 C2 C3 C4 C5 C6

Trace Coverage (%) 89 100 75 88 71.6 73

of the application during a session. Rachna [36] recon-
structs multi-tabbed user sessions using the recorded
HTTP traffic, traces in lower layers of the network, and
browser logs. Although a proactive session reconstruc-
tion approach can guarantee a complete reconstruction,
they have deployment problems. These methods can also
raise users’ privacy concerns since they can track users’
movements across the Web.
In reactive methods, the input of the session reconstruc-

tion is the previously captured HTTP traffic of a session.
The reactive session reconstruction for traditional Web
applications is a well-studied problem [25]. In this paper,
our focus was on reactive session reconstruction method
for RIAs. To the best of our knowledge, few works [10, 37]
have been done for session reconstruction in RIAs. Here
we briefly mention some of the previous reactive session
reconstruction techniques. None of the previous meth-
ods handle complex RIAs, and their focus is on Web 1.0
applications.
A graph-based method, RCI tries to reconstruct user-

browser interactions [7]. RCI first builds the referral
graph, and then prunes the graph by removing the auto-
matically generated requests during rendering a page.
Then nodes of the graph, which represent visited pages,
are compared with DOM elements to find a triggering ele-
ment for each request [7, 38]. ClickMiner [7] reconstruct
user session from HTTP traces recorded by a passive
proxy. Their proposed approach focuses on actions that
change the URL of the application. However, in RIAs
many actions do not alter the URL but rather update
the DOM of the page [39]. In addition, although there is
some level of support for JavaScript, ClickMiner is lack-
ing the specific capabilities that are required to handle
RIAs (e.g., handling user-inputs, client-side randomness,
restoring the previous state, sequence check). Our pre-
vious work, ForenRIA [10], proposes a forensics tool to
perform automated and complete reconstruction of a user
session in RIAs. However, ForenRIA is less effective and
scalable than D-ForenRIA since it is implemented as a
single-threaded system where a single client (i.e., browser)
is responsible for executing all the possible actions on a
given page. ForenRIA also did not have the ability to sup-
port complex user input actions, timers, and actions that
do not generate any traffic.
In reactive session reconstruction methods, caching can

present a problem [7]. The reason is that caching pre-
vents the registration of all requests by the server, and
thus blurs the picture of user behavior [11]. Therefore, the
reconstruction algorithm should attempt to infer cached
requests. ClickMiner uses referral relationship graphs to
detectmissing pages which are not present in the recorded
traffic. A related problem, Path completion, has been dis-
cussed in Web mining research [40, 41]. Path completion
refers to extraction of page visits that are not recorded

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 26 of 27

in an access log due to caching. All previously proposed
path completionmethods use relationships between pages
to address this problem. For example, Spiliopoulou et. al.
proposed a path completion method using the referer and
the site-topology. Li. et. al. also use referer information
to solve this problem [40]. However, in RIAs the Web
application has very few pages and the referer information
is usually missing; Therefore, previous path completion
methods do not work with RIAs. As far as we know, our
idea of using the action-graph (Section 3.8) is the first path
completion technique for RIAs.

6 Conclusions
Session reconstruction is much more challenging in RIAs
than in traditionalWeb applications. In RIAs, simply look-
ing at the data flowing between the browser and the
server does not provide the necessary information to
reconstruct user-interactions. In this paper, we proposed
D-ForenRIA, a distributed tool to recover user-browser
interactions from a given HTTP trace in RIAs. The main
contributions are:

• Providing a formal definition of the session
reconstruction problem in the context of
client/server applications

• A general solution for the session reconstruction
problem that has been implemented in the context of
RIAs in a tool called D-ForenRIA

• Addressing several challenges for session
reconstruction in RIAs including the identification of
candidate user-browser interactions, efficient
ordering of candidate actions, distributed
reconstruction, detection of complex user-input
interactions and actions that do not generate any
HTTP traffic

• Experiments on six different websites showing
promising improvement of performance and
scalability

However, there are still several directions for improve-
ments: first, the system must be tested on larger sets of
RIAs. In addition, we need better algorithms to detect the
most promising candidate actions where signature-based
ordering is inapplicable. Moreover, the tool needs to be
improved to handle cases where the log is incomplete, and
when it is not recorded from the start of the session.
Exploring how D-ForenRIA can be used in a Web usage

mining tool, or for the regression testing of RIAs by
replaying the extracted user-actions, are other application
domains for future work.

Endnotes
1 The study performed in August 2016. Results are avail-

able at: http://ssrg.eecs.uottawa.ca/sr/alexaajax.html

2D-ForenRIA: Distributed Forensic session reconstruc-
tion for RIAs

3The user-interface was implemented by Muhammad
Faheem.

4 This does not prevent server-side non-determinism,
where the response to a given request from a given client-
state might be different at different time. This more
common scenario is not a problem for session reconstruc-
tion since the responses are recorded and will this be
deterministic in the replay.

5Here |Rs| denotes the number of requests/responses
in Rs, and begin(n,b) function returns the sequence of the
first n elements of sequence b).

6Here R − Rs refers the trace that contains elements in
Rminus the sequence of requests/responses that has been
matched to Rs.

7 https://www.websocket.org/aboutwebsocket.html
8 https://jquery.com/
9 https://mootools.net/
10 For example, on(“event”) in jQuery or the addEvent

method of Mootools.
11 In this case, D-ForenRIA will hijack the hijacked code,

and will call that hijacked code after having executed its
own code.

12 http://ssrg.site.uottawa.ca/sr/demo.html
13 http://www.telerik.com/fiddler
14The compression was done using 7z algorithm
15 https://httpd.apache.org/docs/2.4/mod/mod_

dumpio.html
16 https://msdn.microsoft.com/en-us/library/

ms227673.aspx
17 It is notable that the SR-Proxy in D-ForenRIA is just

used during the reconstruction and not for recording the
traffic.

18 In our previous paper [10] we were using PhantomJS
(PhantomJS.org) instead of Selenium. PhantomJS is much
faster that Selenium and yields better reconstruction time,
but only offers limited multi-browser support.

19 The code coverage was measured using Chrome 59.0
devtools and we excluded the JavaScript code which can
never be executed at run-time (dead code).

Acknowledgments
This work is supported by Center for Advanced Studies, IBM® Canada Lab and
the Natural Sciences and Engineering Research Council of Canada (NSERC). A
special thank to Muhammad Faheem and Sara Baghbanzadeh.

Authors’ contributions
SH was the main researcher for this work during his Ph.D. studies. He has
participated in the design of the algorithms, the implementation of the

http://ssrg.eecs.uottawa.ca/sr/alexaajax.html
https://www.websocket.org/aboutwebsocket.html
https://jquery.com/
https://mootools.net/
http://ssrg.site.uottawa.ca/sr/demo.html
http://www.telerik.com/fiddler
https://httpd.apache.org/docs/2.4/mod/mod_dumpio.html
https://httpd.apache.org/docs/2.4/mod/mod_dumpio.html
https://msdn.microsoft.com/en-us/library/ms227673.aspx
https://msdn.microsoft.com/en-us/library/ms227673.aspx

Hooshmand et al. Journal of Internet Services and Applications (2018) 9:9 Page 27 of 27

D-ForenRIA, and in conducting the experiments. GVJ (the supervisor of SH),
GB, and IVO have made substantial contributions to the design of the
algorithms, the technical discussions and on the drafts of the manuscript. RC
shared his industrial insight and provided constant feedback on the suitability
of D-ForenRIA for real-world use. All authors have read and approved the final
version of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1University of Ottawa, 800 King Edward Avenue, K1N 6N5 Ottawa, Canada.
2IBM Security, Rogers St, MA 02140 Cambridge, USA. 3IBM Centre for
Advanced Studies, Ottawa, Canada.

Received: 29 October 2017 Accepted: 15 March 2018

References
1. Garrett JJ, et al. Ajax: A new approach to web applications. 2005. Available

at: http://adaptivepath.org/ideas/ajax-new-approach-web-applications/.
Accessed Mar 2018.

2. Marini J. Document Object Model. New York: McGraw-Hill; 2002.
3. Fraternali P, Rossi G, Sánchez-Figueroa F, Vol. 14. Rich internet

applications. New York: IEEE Internet Computing; 2010. pp. 9–12.
4. Mikowski MS, Powell JC. Single page web applications. 2013.
5. Nederlof A, Mesbah A, Deursen Av. Software engineering for the web:

the state of the practice. In: Companion Proceedings of the 36th
International Conference on Software Engineering. New York: ACM; 2014.

6. Mesbah A, Van Deursen A, Lenselink S. Crawling ajax-based web
applications through dynamic analysis of user interface state changes.
ACM Trans Web (TWEB). 2012;6(1):3.

7. Neasbitt C, Perdisci R, Li K, Nelms T. Clickminer: Towards forensic
reconstruction of user-browser interactions from network traces. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. New York: ACM; 2014. p. 1244–1255.

8. Mobasher B. Data mining for web personalization. In: The Adaptive Web.
Berlin, Heidelberg: Springer; 2007. p. 90–135.

9. Amalfitano D, Fasolino AR, Tramontana P. Rich internet application
testing using execution trace data. In: Software Testing, Verification, and
Validation Workshops (ICSTW), 2010 Third International Conference On.
IEEE; 2010. p. 274–83.

10. Baghbanzadeh S, Hooshmand S, Bochmann G, Jourdan GV, Mirtaheri S,
Faheem M, Onut IV. Reconstructing interactions with rich internet
applications from http traces. In: IFIP International Conference on Digital
Forensics. Springer; 2016. p. 147–64.

11. Spiliopoulou M, Mobasher B, Berendt B, Nakagawa M. A framework for
the evaluation of session reconstruction heuristics in web-usage analysis.
INFORMS J Comput. 2003;15(2):171–90.

12. addEventListener API, Mozilla Developers Network. https://developer.
mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener.
Accessed 22 Mar 2017.

13. Chess B, O’Neil YT, West J. 2007. Available at: https://www.infopoint-
security.de/open_downloads/alt/JavaScript_Hijacking.pdf. Accessed Mar
2018.

14. Bubbling and capturing in JavaScript. http://javascript.info/tutorial/
bubbling-and-capturing. Accessed 22 Mar 2017.

15. W3C HTML5 recommendations. https://www.w3.org/TR/2014/REC-
html5-20141028/forms.html#forms. Accessed 22 Mar 2017.

16. Oh J, Moon SM. Snapshot-based loading-time acceleration for web
applications. In: Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization. IEEE Computer
Society; 2015. p. 179–89.

17. Oh J, Kwon J-w, Park H, Moon SM. Migration of web applications with
seamless execution. ACM SIGPLAN Not. 2015;50(7):173–85.

18. Caching in HTTP. https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.
html. Accessed 22 Mar 2017.

19. Freier A, Karlton P, Kocher P. The secure sockets layer (ssl) protocol
version 3.0. 2011. Available at: https://tools.ietf.org/html/rfc6101.
Accessed Jan 2018.

20. Carnavalet XCde, Mannan M. Killed by proxy: Analyzing client-end TLS
interception software. In: Network and Distributed System Security
Symposium. Internet Society; 2016.

21. Callegati F, Cerroni W, Ramilli M. Man-in-the-middle attack to the https
protocol. IEEE Secur Priv. 2009;7(1):78–81.

22. Selenium: Web browser automation. http://www.seleniumhq.org/.
Accessed 22 Mar 2017.

23. Srivastava J, Cooley R, Deshpande M, Tan P-N. Web usage mining:
Discovery and applications of usage patterns from web data. SIGKDD
Explorations. 2000;1(2).

24. Dell RF, Román PE, Velásquez JD. Web user session reconstruction with
back button browsing. In: International Conference on Knowledge-Based
and Intelligent Information and Engineering Systems. Berlin: Springer;
2009. p. 326–32.

25. Cooley R, Mobasher B, Srivastava J. Data preparation for mining world
wide web browsing patterns. Knowl Inf Syst. 1999;1(1):5–32.

26. Dohare MPS, Arya P, Bajpai A. Novel web usage mining for web mining
techniques. Int J Emerg Technol Adv Eng. 2012;2(1):253–62.

27. Atterer R. Logging usage of ajax applications with the “usaprox” http
proxy. In: Proceedings of the WWW 2006 Workshop on Logging Traces of
Web Activity: The Mechanics of Data Collection. ACM; 2006.

28. Clifton B. Advanced Web Metrics with Google Analytics. Indianapolis:
John Wiley & Sons; 2012.

29. Clicktale: Light up the digital world. http://www.clicktale.com/. Accessed
22 Mar 2017.

30. Forsee: Web and mobile replay. http://www.foresee.com/products/web-
mobile-replay/. Accessed 22 Mar 2017.

31. iMacros for Chrome. https://imacros.net/browser/cr/welcome/. Accessed
22 Mar 2017.

32. Andrica S, Candea G. Warr: A tool for high-fidelity web application record
and replay. In: Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st
International Conference On. Los Alamitos: IEEE; 2011. p. 403–10.

33. Amalfitano D, Fasolino AR, Polcaro A, Tramontana P. The dynaria tool for
the comprehension of ajax web applications by dynamic analysis. Innov
Syst Softw Eng. 2014;10(1):41–57.

34. Marchetto A, Tonella P, Ricca F. Reajax: a reverse engineering tool for
ajax web applications. IET Softw. 2012;6(1):33–49.

35. Zaidman A, Matthijssen N, Storey MA, Van Deursen A. Understanding
ajax applications by connecting client and server-side execution traces.
Empir Softw Eng. 2013;18(2):181–218.

36. Raghavan S, Raghavan S. Reconstructing tabbed browser sessions using
metadata associations. In: IFIP International Conference on Digital
Forensics. Switzerland: Springer; 2016. p. 165–88.

37. Hooshmand S, Mahmud A, Bochmann GV, Faheem M, Jourdan GV,
Couturier R, Onut IV. D-forenria: Distributed reconstruction of
user-interactions for rich internet applications. In: Proceedings of the 25th
International Conference Companion on World Wide Web. International
World Wide Web Conferences Steering Committee. New York: ACM;
2016. p. 211–4.

38. Xie G, Iliofotou M, Karagiannis T, Faloutsos M, Jin Y. Resurf:
Reconstructing web-surfing activity from network traffic. In: IFIP
Networking Conference, 2013. New York: IEEE; 2013. p. 1–9.

39. Mesbah A. Software analysis for the web: Achievements and prospects. In:
Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd
International Conference On, vol. 5. Los Alamitos: IEEE; 2016. p. 91–103.

40. Li Y, Feng B, Mao Q. Research on path completion technique in web
usage mining. In: Computer Science and Computational Technology,
2008. ISCSCT’08. International Symposium On, vol. 1. Los Alamitos: IEEE;
2008. p. 554–9.

41. Munk M, Kapusta J, Švec P. Data preprocessing evaluation for web log
mining: reconstruction of activities of a web visitor. Procedia Comput Sci.
2010;1(1):2273–280.

42. Typo3 CMS. http://cms-next.demo.typo3.org/typo3/. Accessed 22 Mar
2017.

http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://www.infopoint-security.de/open_downloads/alt/JavaScript_Hijacking.pdf
https://www.infopoint-security.de/open_downloads/alt/JavaScript_Hijacking.pdf
http://javascript.info/tutorial/bubbling-and-capturing
http://javascript.info/tutorial/bubbling-and-capturing
https://www.w3.org/TR/2014/REC-html5-20141028/forms.html#forms
https://www.w3.org/TR/2014/REC-html5-20141028/forms.html#forms
https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
https://tools.ietf.org/html/rfc6101
http://www.seleniumhq.org/
http://www.clicktale.com/
http://www.foresee.com/products/web-mobile-replay/
http://www.foresee.com/products/web-mobile-replay/
https://imacros.net/browser/cr/welcome/
http://cms-next.demo.typo3.org/typo3/

	Abstract
	Keywords

	Introduction
	Demonstration scenario for D-ForenRIA
	Organization

	Session reconstruction problem
	A general session reconstruction approach
	An improved session reconstruction algorithm
	Signature-based ordering of candidate actions
	Concurrent evaluation of candidate actions:
	Extracting action parameters
	Handling randomness in requests
	Handling non-user initiated requests:

	D-ForenRIA: a session reconstruction tool for RIAs
	Architecture of D-ForenRIA
	Interactions between SR-Browser and SR-Proxy
	SR-Browsers' and SR-Proxy's components
	SR-Browsers' and SR-Proxy's algorithms

	Extraction of candidate actions
	Efficient ordering of candidate actions (SR-Proxy)
	Timeout-based AJAX calls
	Detection of user inputs (SR-Proxy)
	Checking the stable condition (SR-Browser)
	Loading the last known good state (SR-Browser and SR-Proxy)
	Detection of actions that do not generate any HTTP request

	Experiments
	Test applications
	Experimental Setup
	Experimental results
	Discussion:

	Related works
	Conclusions
	Acknowledgments
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

